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1 Experimental platform

This dataset was recorded for cooperative localization with two Renault Zoés.

Figure 1: Experimental platform of the Heudiasyc UMR UTC/CNRS 7253 lab with two vehicles
equipped with low cost GNSS receivers (in purple), dead reckoning sensors (in green) and LiDARs (in
red and orange).

*https://creativecommons.org/licenses/by-nc-sa/4.0/
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Figure 1 shows a platooning of the two Renault Zoés on the UTC Seville test track in Compiègne,
France. Each vehicle is equipped with a low-cost mono-frequency GNSS receiver Ublox M8T EVK for
global pose estimation and an RTK GNSS/INS receiver Novatel SPAN CPT for the ground truth (in
purple). The dead reckoning information is estimated by the vehicle and sent through the CAN bus
(in green). Finally, the following vehicle is able to perceive the leading vehicle with a 110° �eld of view
SICK LDMRS LiDAR (in red) and the leader can perceive the follower with a SICK LMS 151 LiDAR.

Figure 2: Frames of the vehicle (in green), the ground truth (in yellow), the GNSS receiver antenna
(in purple) and the front and back LiDAR (in red and orange).

The global poses are given on an ENU (East, North, Up) frame centered at the following position:

� latitude = 49.399175564°

� longitude = 2.798755219°

� altitude = 73.5217 m (relative to the reference WGS84 ellipsoid)

Each sensor uses a di�erent frame:

� the position of the ground truth in the frame of the base is (-0.093 0.0 0.202)

� the position of the GNSS antenna in the frame of the base is (1.388 0.0 1.302)

� the position of the front LiDAR in the frame of the base is (3.284 0.0 0.075) with 0.4° pitch
rotation (as illustrated in �gure 2).

� the position of the back LiDAR in the frame of the base is (-0.807 0.0 0.160) with 180° yaw
rotation.
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2 Scenarios

2.1 Platooning Seville

Figure 3: Test track with the nine lapses of the leader (in blue) and the follower (in green) vehicles.
(Lea�et | Tiles © Esri - Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP,

UPR-EGP, and the GIS User Community).

The two Renault Zoés are driving on a platooning in the Seville test track composed of two roundabouts
and a straight lane. Nine lapses were done on the 10 min drive as illustrated in �gure 3.
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3 Calibration

3.1 GNSS
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Figure 4: Errors of the leader Ublox 8 GNSS receiver with the biases estimation and con�dence intervals.

Figure 4 show the GNSS biases estimated in post-processing with a mean �lter. The 2σ con�dence
intervals are computed from the �horizontal accuracy� �eld provided by the Ublox 8 (for the smaller
intervals) and by standard deviations computed with these errors (for the Bigger intervals). The
estimated standard deviations are for the follower:

σx = 1.055 m
σy = 0.885 m
σθ = 0.0398 rad
and for the leader:
σx = 1.016 m
σy = 0.901 m
σθ = 0.0362 rad

3.2 Speed and yaw rate

Sensor calibration reduces errors due to incorrect parameters. For example, an uncalibrated gyrometer
can return a biased yaw rate measurement.

In the case of dead reckoning, the current heading depends only on the initial heading and the yaw
rate. On the �gure 5, we observe that the heading error has a slope which is due to a bias on the
yaw rate given by the ESP gyrometer. This bias is estimated by averaging the signed error between
the yaw rate coming from the CAN bus and the yaw rate estimated by the ground truth. In one test,
a bias of 0.004075 rad/s was observed for the following vehicle and a bias of 0.003463 rad/s for the
leading vehicle. Removing this bias eliminates the observed slope (Fig. 5).

Once the heading error has been corrected, the longitudinal error can then be corrected. If we
consider only straight lines, when the yaw rate is close to 0, we can see that the speed error is constantly
greater than 0 (in red on the �gure 6a). As the perimeters of the wheels can change according to the
condition of the tires, it is important to be able to estimate them regularly to avoid incorrect speeds
for each wheel. In practice, this phenomenon can be considered as a scaling factor on speed. After
calibration, we found a factor of 1.01 for both vehicles. Thus the average longitudinal error when the
vehicle is moving in a straight line is considerably reduced (in blue in the �gure 6b).
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Figure 5: Yaw rate correction and in�uence on the heading of the vehicle.
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(a) Speed error.
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(b) Position error.

Figure 6: Speed errors of the leader Vehicle with and without corrections and in�uence on position
errors.
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Table 1: Position error ¯‖εp‖, speed error ¯|εv|, heading error ¯|εθ| and yaw rate error ¯|εω| without
correction and with correction of the gyrometer bias (0.003325 rad/s), by adding a scale factor (1.0157)
and then using a lever arm (0.5284 m). These corrections are cumulated to reduce the errors as much
as possible.

Without Gyro Scale lever
correction bias factor arm

¯|εω| (rad/s) 0.006768 0.006202 0.006202 0.006202
¯|εθ| (rad) 0.2819 0.0117 0.0117 0.0117
¯|εv| (m/s) 0.088207 0.088207 0.083360 0.037656
¯‖εp‖ (m) 10.0807 1.0799 1.2150 0.8014

Once this error has been corrected, we can see that the remaining error seems to be correlated to
the yaw rate of the vehicle (in blue on the �gure 6a). Indeed, the tires of the vehicle are deformed
in turns. As the ESP longitudinal speed estimation is based only on a kinematic model and not on
a dynamic one, the resulting error is retained and is not given at the center of the rear axle and the
yaw rate intervenes. By adding the absolute value of the yaw rate multiplied by a lever arm, the
longitudinal speed can be corrected (in green in the �gure 6a).

The table 1 shows the errors of yaw rate, heading, longitudinal speed and position. When the
gyrometer bias is corrected, the yaw rate error is reduced and the heading and position errors are also
reduced. The scaling factor applied to the speed then reduces its error. Finally, the addition of the
lever arm makes the speed and position errors smaller.

The �nal corrections are:

ω = ω + ω0 (1)

v = kv · v − l · |ω| (2)

With for the follower:
ω0 = 0.003264 rad/s
kv = 1.0124
l = 0.4847m
and for the follower:
ω0 = 0.003325 rad/s
kv = 1.0157
l = 0.5284m
After this correction the standard deviation of the yaw rate and the speed is estimated for the

follower:
σv = 0.103m/s
σω = 0.0447 rad/s
and for the leader:
σv = 0.106m/s
σω = 0.0435 rad/s
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4 Post processing

Rf

Rl

R0

fql

Figure 7: Relative pose between the leader and the follower vehicles estimated from the LiDAR points (in

red) and the polygonal model (in blue).

The relative pose between the leader and the follower vehicles is estimated with a point to line iterative
closest point (PLICP) (Figure 7). The SICK LDMRS LiDAR points (in red) are matched with a
polygonal model (in blue). The relative pose is estimated by minimizing the mean distance between
the LiDAR points and the model. The model is initialized using the Novatel SPAN CPT GNSS
receivers to compute the initial relative pose. This algorithm is presented in:

E. Héry, Ph. Xu, and Ph. Bonnifait. LiDAR based relative pose and covariance estimation for
communicating vehicles exchanging a polygonal model of their shape. 10th Workshop on Planning,
Perception and Navigation for Intelligent Vehicles, Madrid, Spain, october 2018. https://hal.archives-
ouvertes.fr/hal-01903327

Di�erent tests are computed to obtain a more robust relative pose, they are described in:
Héry E, Xu Ph, Bonnifait Ph. Consistent Decentralized Cooperative Localization for Autonomous

Vehicles using LiDAR, GNSS and HDmaps. J Field Robotics. 2020;0-0. https://doi.org/10.1002/rob.22004
This post process data are only available in the CSV datasets.
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5 Datasets

5.1 Rosbag dataset

The following ROS messages were recorded from each vehicle:
From the RTK GNSS/INS receiver Novatel SPAN CPT:
novatel_msgs/INSPVAX (50 Hz)1span/enuposeCovs
novatel_msgs/CORRIMUDATA (50 Hz)2

From the mono-frequency GNSS receiver Ublox M8T EVK:
ublox_msgs/NavPVT (2 Hz)3

From the LiDAR SICK LDMRS:
sensor_msgs/PointCloud2 (12.5 Hz)4

From the LiDAR SICK LMS 151:
sensor_msgs/LaserScan (50 Hz) 5

From the novatel_msgs/INSPVAX and the ublox_msgs/NavPVT, geometry_msgs/PoseWithCovarianceStamped
were computed to give the poses of the bases for these GNSS receivers.6

From the CAN bus messages a geometry_msgs/TwistWithCovarianceStamped were computed to
give the speed and yaw rate of the vehicles.7

Finally, the HD map composed of the center of the lanes and the lane borders as well as the trajec-
tory (the center of the lanes followed by the vehicles) were recorded with visualization_msgs/MarkerArray
8 and geometry_msgs/PolygonStamped9

Topic Type

/map_markers/map_markers visualization_msgs/MarkerArray
/map_markers/trajectory geometry_msgs/PolygonStamped

/tf tf2_msgs/TFMessage
/zoe_{g/w}/ldmrs/cloud sensor_msgs/PointCloud2

/zoe_w/lms/scan sensor_msgs/LaserScan
/zoe_{g/w}/span/enuposeCovs geometry_msgs/PoseWithCovarianceStamped

/zoe_{g/w}/span/novatel_data/corrimudata novatel_msgs/CORRIMUDATA
/zoe_{g/w}/span/novatel_data/inspvax novatel_msgs/INSPVAX

/zoe_{g/w}/ublox/enuposeCovs geometry_msgs/PoseWithCovarianceStamped
/zoe_{g/w}/ublox/navpvt ublox_msgs/NavPVT
/zoe_{g/w}/vehicle/twist geometry_msgs/TwistWithCovarianceStamped

Figure 8: Summary of the di�erent ROS topics with correspondent types recorded in the ROS bag
dataset.

/zoe_{g/w} corresponds to /zoe_g, the gray Renault Zoé (the follower) or /zoe_w, the white
Renault Zoé (the leader).

1

https://github.com/ros-drivers/novatel_span_driver/blob/master/novatel_msgs/msg/INSPVAX.msg
https://docs.novatel.com/oem7/Content/SPAN_Logs/INSPVAX.htm
2

https://github.com/ros-drivers/novatel_span_driver/blob/master/novatel_msgs/msg/CORRIMUDATA.msg
https://docs.novatel.com/OEM7/Content/SPAN_Logs/CORRIMUDATA.htm
3https://docs.ros.org/noetic/api/ublox_msgs/html/msg/NavPVT.html
https://www.u-blox.com/en/docs/UBX-14041540
4https://docs.ros.org/noetic/api/sensor_msgs/html/msg/PointCloud2.html
5https://docs.ros.org/noetic/api/sensor_msgs/html/msg/LaserScan.html
6https://docs.ros.org/noetic/api/geometry_msgs/html/msg/PoseWithCovarianceStamped.html
7https://docs.ros.org/noetic/api/geometry_msgs/html/msg/TwistWithCovarianceStamped.html
8https://docs.ros.org/noetic/api/visualization_msgs/html/msg/MarkerArray.html
9https://docs.ros.org/noetic/api/geometry_msgs/html/msg/PolygonStamped.html
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Figure 9: rviz display of the ROS bag dataset.

To visualize this dataset on rviz (see �gure 9) the following command can be executed:

roslaunch static_tf_coop.launch

rosrun rviz rviz -d coop.rviz

rosbag play coop.bag
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5.2 CSV dataset

The following .csv �les were generated from the ROS messages:
Kinetics vehicle data from ESP:
Python example:

import pandas as pd

df = pd.read_csv('follower_kinetics.csv')

#df = pd.read_csv('leader_kinetics.csv')

df['time'] # time (s)

df['lon_vel'] # longitudinal speed (m/s)

df['yaw_rate'] # yaw rate (rad/s)

df['lon_acc'] # longitudinal acceleration (m/s^2)

df['lat_acc'] # lateral acceleration (m/s^2)

RTK GNSS/INS receiver Novatel SPAN CPT:
novatel_msgs/INSPVAX (50 Hz)
Python example:

import pandas as pd

df = pd.read_csv('follower_gnss_ref.csv')

#df = pd.read_csv('leader_gnss_ref.csv')

df['time'] # time (s)

df['x'] # east (m)

df['y'] # north (m)

df['z'] # up (m)

df['x_std'] # east (m)

df['y_std'] # north (m)

df['z_std'] # up (m)

df['roll'] # roll (rad)

df['pitch'] # pitch (rad)

df['yaw'] # yaw (rad)

df['roll_std'] # roll standard deviation (rad)

df['pitch_std'] # pitch standard deviation (rad)

df['yaw_std'] # yaw standard deviation (rad)

df['lat'] # latitude (deg)

df['lon'] # longitude (deg)

df['height'] # height above ellipsoid (m)

df['alt'] # height above mean sea level (m)

df['vel_x'] # east velocity (m/s)

df['vel_y'] # north velocity (m/s)

df['vel_z'] # up velocity (m/s)

df['vel_x_std'] # east velocity standard deviation (m/s

df['vel_y_std'] # north velocity standard deviation (m/s)

df['vel_z_std'] # up velocity standard deviation (m/s)
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novatel_msgs/CORRIMUDATA (50 Hz)
Python example:

import pandas as pd

df = pd.read_csv('follower_imu_ref.csv')

#df = pd.read_csv('leader_imu_ref.csv')

df['time'] # time (s)

df['roll_rate'] # roll rate (rad/s)

df['pitch_rate'] # pitch rate (rad/s)

df['yaw_rate'] # yaw rate (rad/s)

df['lon_acc'] # Longitudinal acceleration (m/s^2)

df['lat_acc'] # Lateral acceleration (m/s^2)

df['vert_acc'] # Vertical acceleration (m/s^2)

Mono frequency GNSS receiver Ublox M8T EVK:
ublox_msgs/NavPVT (2 Hz)
Python example:

import pandas as pd

df = pd.read_csv('follower_gnss.csv')

#df = pd.read_csv('leader_gnss.csv')

df['time'] # time (s)

df['time_acc'] # time accuracy (s)

df['x'] # east (m)

df['y'] # north (m)

df['bias_x'] # east bias (m)

df['bias_y'] # north bias (m)

df['z'] # up (m)

df['lat'] # latitude (deg)

df['lon'] # longitude (deg)

df['height'] # height above ellipsoid (m)

df['alt'] # height above mean sea level (m)

df['h_acc'] # horizontal accuracy (m)

df['v_acc'] # vertical accuracy (m)

df['dop'] # position Dilution Of Precision (1)

df['yaw'] # yaw (heading in the ENU frame) (rad)

df['yaw_acc'] # yaw accuracy (rad)

df['vel_x'] # east velocity (m/s)

df['vel_y'] # north velocity (m/s)

df['vel_z'] # up velocity (m/s)

df['vel_h'] # horizontal/ground velocity (m/s)

df['vel_acc'] # velocity accuracy (m/s)
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SICK LMS 151 LiDAR:
Python example:

import pandas as pd

df = pd.read_csv('leader_back_lidar.csv')

df['time'] # time (ns)

df['angle_min'] # min angle (rad)

df['angle_max'] # max angle (rad)

df['angle_increment'] # angular step between two angles (rad)

df['range_min'] # min range (m)

df['range_max'] # max range (m)

df['range0'] # range 0 (m)

...

df['range540'] # range 540 (m)

df['intensity0'] # light intensity 0

...

df['intensity540'] # light intensity 540

Point to line iterative closest point (PLICP):
Python example:

import pandas as pd

df = pd.read_csv('follower_plicp.csv')

Point to line iterative closest point (PLICP)

df['time'] # time (s)

df['x'] # relative longitudinal coordinate (m)

df['y'] # relative lateral coordinate (m)

df['yaw'] # relative yaw (rad)

df['cov_x'] # covariance matrix of the relative pose (m^2)

df['cov_y'] # covariance matrix of the relative pose (m^2)

df['cov_yaw'] # covariance matrix of the relative pose (rad^2)

df['cov_xy'] # covariance matrix of the relative pose (m^2)

df['cov_xyaw'] # covariance matrix of the relative pose (m*rad)

df['cov_yyaw'] # covariance matrix of the relative pose (m*rad)

df['usable'] # usable flag to filter bad estimation

df['mean_point2model_dist'] # Mean distance between the points and the model (m)

df['plicp_cond'] # condition number of the PLICP

df['plicp_det'] # determinant of the PLICP

df['khi2_pos'] # pose mahalanobis distance with the initial pose

df['khi2_yaw'] # yaw mahalanobis distance with the initial yaw

df['cluster_nb_points'] # number of points in the cluster

df['box_x_dpos'] # correction computed from the bounding box (m)

df['box_y_dpos'] # correction computed from the bounding box (m)

df['box_x_center'] # center of the bounding box (m)

df['box_y_center'] # center of the bounding box (m)

df['box_with'] # with of the bounding box (m)

df['box_lenght'] # lenght of the bounding box (m)

df['x_init'] # initial relative longitudinal coordinate (m)

df['y_init'] # initial relative lateral coordinate (m)

df['yaw_init'] # initial relative yaw (rad)

5.3 PCD LiDAR dataset

PCD (12.5 Hz)10 �les from the PCL library are used for the SICK LDMRS LiDAR datasets:

10https://pcl.readthedocs.io/projects/tutorials/en/latest/pcd_�le_format.html
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Python example:

import pcl

cloud = pcl.load('file.pcd') # LiDAR points scan (m)

5.4 Synchronized CSV dataset

Datasets were generated from the CSV datasets synchronized at the times of the PLICP dataset at
12.5 Hz. A Matlab/Octave reader is present to tests this data.
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